
M/)TION OF A GRANULAR MATERIAL IN A TALL VIBRATING SYSTEM 

A. F. Ryzhkov and A. P~ Baskakov UDC 66~036.5 

The verti=al motion of particles is considered for a tall vibrating system; a study 
is made of the effects of stress waves on the distance between the bottom of the 
vessel and the bottom of the bed. 

Vertical vibration of a vessel containing a fine powder may be accompanied by pe:riodic 
detachment of the layer from the bottom and fluidization by the gas infiltrating from the 
gap, which, in turn, may be accompanied by gas bubbles, rapid circulation, and extensive mix- 
ing of the material. 

Kroll [i] first considered the motion and later Yoshida and Kousaka [2]. The layer was 
represented as a rigid porous body, which gave the path followed by the bed and the parame- 
ters of the vibration at which cyclic fluidization was produced by a pulsating gas flow. 
However, the specification of bed rigidity and the use of a relation for detachment of a 
heavy material point as the initial condition resulted in formulas that reflect only ~:he mo- 
tion of shallow layers. 

Oscilloscope recordings have been made of the pressure exerted by electrocorund~ parti- 
cles of small size (0.08-1.32 mm) on a membrane built into the bottom [3], and this indicated 
that rapidly damped vibrations arise when the material strikes the bottom, resulting :n a 
pressure on the bottom in addition to the inertial dynamic pressure. 

These vibrations are damped out in the lower layers long before the end of the joint mo- 
tion of the particles and bottom (Fig. i). Therefore, they have no effect on the instant of 
detachment, and the phase angle of detachment can be found from the condition that the com- 
pressive forces at the lower boundary of a rigid porous body vanish, which is [4] defined by 
the following formula that incorporates the dissipation: 

sin00- ~v , (i) 
Kv 

1--exp(--NHp) " (2) 

Here ~v is the coefficient for the delay in the vibrational detachment for an unbounded lay- 
er, K v is the relative acceleration due to the vibration, 00 = mT is the detachment angle, 
T is time, and n is the damping coefficient. 

The amplitude and duration of the shock and, consequently, also of the free vibrations 
increase with the height of the bed, and the power part of the bed has time to perfo~ not 
more than one oscillation during the time of contact for a height greater than 0.i m. The 
total pressure on the bottom at the end of the contact phase may be less than or greater than 
the inertial pressure, in accordance with the phase of the vibration, and this can deiay or 
accelerate the loss of compressive stresses. Therefore 00 does not vary in a monotonic fash- 
ion with the height of the bed, although (i) would imply this, but instead passes through a 
series of turning points. The value of 00 approaches the limit of ~/2 near the maxima. 
Near the minima, the angle falls to values close to or less than the angle of detachment for 
a heavy material point 0~ as given by (i) as Hp § 0 (Fig. i). Consequently, the lift-ooff 
is not damped for Hp > 0.2-0.4 m, as is usually assumed, but persists up to Hp = 1 m cr more. 
These turning-point values for the angle occur at smaller bed depths as the vibration fre- 
quency increases or the particle size is reduced. 
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Fig. i. Oscillograms for the particle pressure Ppart 

on the bottom (d = 0.8 mm; fv = 20Hz) and angle of 
detachment of O.08-mm-diameeer particles at 20 Hz (i); 
the same for 0.20-mm particles at 20 Hz (2) and 16 Hz 
(3); A v = 2.73 ram; y, rad. 

We have determined the conditions under which the dynamic stresses at the bottom and 
the angles of detachment for deep beds (Hp > 0.I m) attain their turning-point values by 
considering the equivalent problem of the propagation of quasielastic waves in an imperfectly 
elastic porous body whose center of mass is at rest in the coordinate system. To avoid com- 
plications we assume that the transverse dimensions of the apparatus are fairly large (D > 
0.i m from the data of [5]), which means that the friction between the material and the wall 
can be neglected. Then the motion is described by 

a2ed 2 a2~d (3) = +% av~ Cv az 2 

Here C v is the speed at which the dynamic stresses propagate from the vibration source along 
the bed skeleton, while ~d(Z, ~) is the displacement of an arbitrary section of the body rel- 
ative to the center of mass and ~= ~ + ~2 corrects for the loss of momentum. 

The dynamic stresses are dissipated as they propagate through the bed, the dissipation 
being proportional to the relative strain rate ~@d/~Z: 

a2ed  (4) 
gz,=PdVd azo~ ' 

where 9d is a coefficient representing the effective viscosity; then ~(z,,T), which incor- 
porates the dissipation of the momentum on account of the imperfect elasticity, is 

1 affz, aa~}d (5) ~l(z, T)-- - - - - - - - v  d -  
Pd Oz oz2a~ 

The f u n c t i o n  ~2(z ,  ~) i n c o r p o r a t e s  the  damping a c t i o n  o f  the  gas moving in  the  po re s ;  
i t  d i f f e r s  from ze ro  i f  the  po re s  a r e  smal l  and the  speed o f  the  powder d i f f e r s  from t h a t  of  
the  gas .  The v a l u e  o f  ~2 f o r  smal l  p a r t i c l e s  i s  d e f i n e d  by t he  l i n e a r  p a r t  o f  E r g a n ' s  formu- 
l a :  

% (z, ~) = - -  1 ap __ FAW = F a,  (e - -  ~'d ), (6 )  
Pa az a.~ 

where F = 150[(.1- ~)/E,].[~c/PM(#Md) ~] and AW is the flow speed of the fluid relative to 
the skeleton after ejection from--the gaps between the particles, 

The displacement of the gas ~ in the pores arises from variation in the velocity; so 
the speed ~/aT will be related as follows ([6], p. 387) to the speed of the skeleton: 

a~d (I e) a~d 8 -- -- -- (7) 
aw aT 

706 



From (4)-(7) we have that the equation of motion is 

OZO'd : C v O~d O~@d F O o d  
0% 2 Oz 2 + Vd . . . .  az~ow at 

(8) 

A regular periodic deformation is applied to the lower boundary of the model, which is 
�9 harmonic to a first approximation: 

~d(0, T ) :Od .os in~T , (9) 

where ~d.0 is the amplitude of the strain. 

Then a damped wave of the following form propagates in the body [7]: 

@di =@d.o exp (--  ~z) cos (m~ - -  Xz). 

ary: 

(i0) 

The incident wave is reflected downwards as a relaxation wave at the upper free b~und- 

1] 2" 

~d 2 =a~,d.oexp [-- 'q (2Hp - -  z)] cos [(o'~ - -  X (2Hp - -  z)], (11) 

2 - 1 - - m  Z 1-+- l /  1 - - m  z + ( l - - m 2 )  z ' (12) 

~ z : :  ~ _ { 1  re(n--m) ] / S [  m(n - -ml  J 2 (n--tn)Z } 
1 m ~ ~ 1 + , ( 1 3 )  - -  1 - -  m z ( I - -  m ~ )  z 

where n s 0 is the damping coefficient, a is the reflection coefficient, and X is the analog 
of the wave number k = ~/C v for the phase velocity Cph = mX- Then X = k and n = F/m i3 a 
dimensionless parameter representing the ratio of the viscous forces of the gas to the iner- 
tial forces of the skeleton in the absence of dissipation. This determines the rate of dis- 
sipation of the momentum transferred to the material hy the bottom and the reduction i~ the 
path traveled by the wavefront during the period of vibration. In the iimit n + ~, tae 
energy is dissipated in a layer of infinitely small height, while the wavelength of the per- 
turbation and the phase velocity tend to zero. 

On the other hand, the dimensionless parameter m = ~dX2/4==m represents the increase 
in the rigidity of the material by comparisonwiththat ofan ideally elastic body (v d =0) ~ndas a 
consequence implies an increase in the signal velocity and in the height traveled during the 
vibration period. 

The condition for a turning point in the dynamic stress at the bottom can be detecmined 
by considering only the 'first reflected wave, since the subsequent ones will only acce~ituate 
or attenuate the amplitude of the resultant stresses without effect on the phase. Then the 
relative motion in the material is determined by the form of the signal arising from the in- 
teraction of two waves: consolidation and expansion ~d = Od: + ~d~, and this is dependent 
on the phase shift between the forward and reflected waves. 

The rate of the relative strain 82~d/SZST in a powder containing a gas is less than that 
for an evacuated powder 825~/~zSz having the effective modulus of elasticity Ev[8@d/BZ = 
(i/Ev)Oz] by an amount dependent on the viscous forces arising from the infiltration: 

The relationship between the relative deformation and the dynamic stresses is of the form 

.... OzOv OzO~ § OzO----U - =  E v O~ F~. (14) 

We solve (14) for c z to get 

"c - -  ~Fd~ 
f ~  i 02~d e o 

~ (z, ~)=e ~ Ev J OzO-----~ d~, 

0 

(15) 
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Fig. 2. Dimensionless bed height giving maximum angle of detach- 
ment (solid line, filled points), and minimum angle (dashed-dot 
line, open points) in terms of the dimensionless hydraulic- 
resistance coefficient for corundum powder for H d E 0.7 m in a 
vessel of diameter 0.1-0.3 m for a vibration amplitude of 2.73 mm; 
a) empirical relationship for the phase velocity C v (mm/sec) as 
a function of vihrational frequency fv in Hz: I) d = 1.32 mm; 2) 
0.5; 3) 0.2; 4) 0.16; 5) 0.12; 6) 0.08 mm. 

where ~2@d/BZ~ = B2/~z~r(~d~ + ~d2) is a complex sign-varying function of the height and 
frequency; the pressure on the bottom may actually decrease as the height of the bed increas- 
es; the condition for ~z at the lower boundary to have a turning point takes the form 

sin [(E' - -  1) N + ~] exp (- -  Nn) + A sin (x'N) = 0, (16) 

Z tZ 4 
N----2HpZ; X ' =  -~-; , = a r c t g n ;  A = V ~ - t z  z �9 (17) 

In deriving (.16) we have i~corporated the fact that the time needed for the signal to prop- 
agate to the upper boundary and back again is T = 2Hp/Cph; (16) as n § 0 (n < 0.i) is the 
standard co~dltion for resonance in an elastic rod: sin 2kHp = 0, whereas the exponential 
factor falls to zero for n > 2-3 and the turning-point condition simplifies to 

sin x'N = 0. (18) 

There is a minor discrepancy between the exact formula (16) and the approximate one (18) in 
the region 0.l < n < 1.5, but this does not exceed 5-7%. 

The roots of (18) are multiples of ~: x'N ~ iT; i = I, 2, ...; we determine the sign 
of the second derivative B2az/~Z = at the turning points to establish that the dynamic stress- 
es on the bottom are maximal for i even, whereas they are minimal for i odd. A change from 
one to the other occurs on increasing the height of the bed by ~Hp = 0.5~k/x 2. 

Calculations from (15)-(18) show that coarse powders (n < 0.i) give minimal dynamic 
stresses on the hottom that are always positive. 

The minimum dynamic stresses decrease as n increases, and they become negative for n > 
0.25; then the total stress on the bottom during the period of contact will be less than the 
quasistationary stress arising from the vibrational inertia, and the material will detach from 
the bottom earlier than the classical theory for a rigid porous body would imply, as is con- 
firmed by the measurements of Fig. I, where 8o for curves i and 2 with Hp = 0.12 and 0.18 m 
is less than 8~. 

Figure 2 shows results from (18) in the form of dimensionless height 2kHp as a function 
of n = F/~ for i of 1-4; we also show theobserved values for thedimensionless bed height at 
which the detachment angles are minimal (open points) and maximal (filled points). The or- 
dinate pointswere determined via the following identity: 2kH = iw(Hf/Hv ) 2 where Hf and H v 
are the measured heights for finely divided material (n > 0.I~ and coarse material (n ~ 0.I), 
respectively, at which the detachment angles are extremal. The value for C v was selected 
during the processing, and since it appears in 2kHp(Cv= u/k), was found to be proportional to 
the square root of the vibrational frequency (Fig. 2a), but it was not dependent on the 
particle size. The increase in C v in the model body is due to the increase in the effective 
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rigidity of the elastoviscous skeleton on increasing the vibrational frequency. This model 
gives a good qualitative description of the motion and a reasonably complete quantitative 
description for n < 5-10; quantitative discrepancies occur for n > i0 on account of the gas 
compressibility, and Kroll has shown that this becomes more pronounced as the particle size 
decreases, while the model also becomes less strictly applicable. 

NOTATION 

Av, vibration amplitude; d, particle diameter; fv, vibration frequency; g, acceleration 
of gravity; Hp, height of dense bed; p, gas pressure; z, vertical coordinate; e, poro~ity; 
~c, 9c, dynamic and kinematic viscosities of gas; @M, Pd, densities of material and o~ dense 
bed; az, normal vertical stresses; ~M' particle shape factor; m, angular frequency. 
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EQUATIONS FOR THE HEAT FLUXES IN THE CATHODE AND ANODE 

SECTIONS OF A TWO-JET PLASMA SOURCE 

S. P. Polyakov and M. G. Rozenberg UDC 533.9.07 

General relationships are derived for the heat fluxes at the cathode, anode, and 
nozzles of a two-jet plasma source working with air at atmospheric pressure. 

A two-jet plasma source is an economical form of high-temperature open-arc source; 
engineering calculations require general relationships for volt--ampere characteristics, 
thermal efficiency, and heat fluxes at the electrodes. Equations for the voltages, currents, 
and efficiency have been given [i] for air at atmospheric pressure, but no values were given 
for the heat fluxes atthe electrodes. These are very important, since a knowledge of these 
fluxes in terms of the other parameters is required in order to design a system with ~ higher 
thermal efficiency and better erosion resistance in the electrodes and nozzles. 

The present study is a continuation of [i] and deals with the heat fluxes in the elec- 
trodes in such a source working in air at atmospheric pressure. 

The apparatus, the arc-striking system, and the working parameters have previously been 
given [i]; the power supply was a dc source with an open-circuit voltage of 600 V. T~e arc 
current was varied over the range 80-250 A, while the power drawn did not exceed 90 kW. The 
air flow rate in each electrode unit varied over the range 0.3-1.5-!0 -s kg/sec. 

The electrical parameters and the heat fluxes to the electrodes and nozzle were mea- 
sured; the temperature of the cooling water was measured with a precalibrated differentiated 
six-junction Chromel--Copel thermocouple. The emfs were recorded with an N-700 loop o~cillo- 
scope. The water flow rate was measured with rotameters and measuring vessels. The error 
in determining the heat fluxes did not exceed • 
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